Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702592

RESUMO

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Assuntos
Antimônio , Micorrizas , Olea , Poluentes do Solo , Micorrizas/fisiologia , Olea/microbiologia , Poluentes do Solo/metabolismo , Antimônio/metabolismo , Adaptação Fisiológica , Resíduos Industriais , Fotossíntese/efeitos dos fármacos , Biodegradação Ambiental , Biomassa
2.
Front Bioeng Biotechnol ; 12: 1348365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544976

RESUMO

Biosurfactants are surface-active molecules with unique qualities and various uses. Many microorganisms produce secondary metabolites with surface-active characteristics that serve various antiviral functions. The HIV and Zika viruses were chosen for this study because they can spread from mother to child and result in potentially fatal infections in infants. Halophilic bacteria from the Red Sea solar saltern in Egypt were screened using drop collapse, emulsification activity, and oil displacement assays to produce biosurfactants and emulsifiers. Halobacterium jilantaiense strain JBS1 was the most effective strain of the Halobacteriaceae family. It had the best oil displacement test and emulsification activity against kerosene and crude oil, respectively. Among the ten isolates, it produced the most promising biosurfactant, also recognized by the GC-MASS library. This study evaluated biosurfactants from halophilic bacteria as potential antiviral drugs. Some of the computer methods we use are molecular docking, ADMET, and molecular dynamics. We use model organisms like the HIV reverse transcriptase (PDB: 5VZ6) and the Zika virus RNA-dependent RNA polymerase (ZV-RdRP). Molecular docking and molecular dynamics make the best complexes with 5VZ6 HIV-RT and flavone (C25) and 5wz3 ZV-RdRP and ethyl cholate (C8). Testing for ADMET toxicity on the complex revealed that it is the safest medicine conceivable. The 5VZ6-C25 and 5wz3-C8 complexes also followed the Lipinski rule. They made five hydrogen bond donors and ten hydrogen bond acceptors with 500 Da MW and a 5:1 octanol/water partition coefficient. Finally, extreme settings require particular adaptations for stability, and extremophile biosurfactants may be more stable.

3.
Front Bioeng Biotechnol ; 12: 1348344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544980

RESUMO

Active components in medicinal plants provide unlimited useful and traditional medicines. Antimicrobial activities are found in secondary metabolites in plant extracts such as argan oil. This experimental investigation aims to determine argan oil's volatile compounds and examine their in vitro antimicrobial properties. In silico simulations, molecular docking, pharmacokinetics, and drug-likeness prediction revealed the processes underlying the in vitro biological possessions. Gas chromatography-mass spectrometry (GC/MS) was used to screen argan oil's primary components. In silico molecular docking studies were used to investigate the ability of the selected bioactive constituents of argan oil to act effectively against Pseudomonas aeruginosa and Staphylococcus aureus (S. aureus) isolated from infections. The goal was to study their ability to interact with both bacteria's essential therapeutic target protein. The 21 chemicals in argan oil were identified by GC/MS. Docking results for all compounds with S. aureus and P. aeruginosa protease proteins ranged from -5 to -9.4 kcal/mol and -5.7 to -9.7 kcal/mol, respectively, compared to reference ligands. Our docking result indicates that the 10-octadecenoic acid, methyl ester was the most significant compound with affinity scores of -9.4 and -9.7 kcal/mol for S. aureus and P. aeruginosa proteins, respectively. The minimal bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) of argan oil were 0.7 ± 0.03 and 0.5 ± 0.01 for S. aureus and 0.4 ± 0.01 and 0.3 ± 0.02 for P. aeruginosa, respectively. We confirmed the antimicrobial properties of argan oil that showed significant growth inhibition for S. aureus and P. aeruginosa.

4.
Saudi Pharm J ; 32(1): 101913, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204591

RESUMO

To fully evaluate and define the new drug molecule for its pharmacological characteristics and toxicity profile, pre-clinical and clinical studies are conducted as part of the drug research and development process. The average time required for all drug development processes to finish various regulatory evaluations ranges from 11.4 to 13.5 years, and the expense of drug development is rising quickly. The development in the discovery of newer novel treatments is, however, largely due to the growing need for new medications. Methods to identify Hits and discovery of lead compounds along with pre-clinical studies have advanced, and one example is the introduction of computer-aided drug design (CADD), which has greatly shortened the time needed for the drug to go through the drug discovery phases. The pharmaceutical industry will hopefully be able to address the present and future issues and will continue to produce novel molecular entities (NMEs) to satisfy the expanding unmet medical requirements of the patients as the success rate of the drug development processes is increasing. Several heterocyclic moieties have been developed and tested against many targets and proved to be very effective. In-depth discussion of the drug design approaches of newly found drugs from 2020 to 2022, including their pharmacokinetic and pharmacodynamic profiles and in-vitro and in-vivo assessments, is the main goal of this review. Considering the many stages these drugs are going through in their clinical trials, this investigation is especially pertinent. It should be noted that synthetic strategies are not discussed in this review; instead, they will be in a future publication.

5.
ACS Omega ; 9(2): 2204-2219, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250414

RESUMO

Mycobacterium tuberculosis is responsible for tuberculosis (TB) all over the world. Despite tremendous advancements in biomedical research, new treatment approaches, and preventive measures, TB incidence rates continue to ascend. The herbaceous plant Acalypha indica, also known as Indian Nettle, belongs to the Euphorbiaceae family and is known as one of the most important sources of medicines and pharmaceuticals for the medical therapy for a range of ailments. However, the precise molecular mechanism of its therapeutic action is still unknown. In this study, an integrated network pharmacology approach was employed to explore the potential mechanism of A. indica phytochemicals against TB. The active chemical components of A. indica were collected from two independent databases and published sources, whereas SwissTargetPrediction was used to identify the target genes of these phytochemicals. GeneCards and DisGeNET databases were employed to retrieve tuberculosis-related genes and variants. Following the evaluation of overlapped genes, gene enrichment analysis and PPI network analysis were performed using the DAVID and STRING databases, respectively. Later, to identify the potential target(s) for the disease, molecular docking was performed. A. indica revealed 9 active components with 259 potential therapeutic targets; TB attributed 694 intersecting genes from the two data sets; and both TB and A. indica overlapped 44 potential targets. The in-depth analysis based on the degree revealed that AKT1 and EGFR formed the foundation of the PPI network. Moreover, docking analysis followed by molecular dynamics simulations revealed that phytosterol and stigmasterol have higher binding affinities to AKT1 and EGFR to suppress tuberculosis. This study provides a convincing proof that A. indica can be exploited to target TB after experimental endorsement; further, it lays the framework for more experimental research on A. indica's anti-TB activity.

7.
Poult Sci ; 102(11): 103054, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729677

RESUMO

The present study aims to evaluate the antimicrobial activity (in vitro study) of olive leaves powder (OLP) and its role in improving the broiler productivity, carcass criteria, blood indices, and antioxidant activity. A total of 270 one-day-old broiler chickens were distributed into 6 treatment groups as follows: the first group: basal diet without any supplementation, while the second, third, fourth, fifth, and sixth groups: basal diet supplemented with 50, 75, 100, 125, and 150 (µg/g), respectively. The in vitro study showed that the OLP has good antibacterial activity in the concentration-dependent matter; OLP 175 µg/mL inhibited the tested bacteria in the zones range of (0.8-4 cm), Klebsiella Pneumonaie (KP) was the most resistant bacteria to OLP concentration. The antioxidant activity of OLP increased with increasing the concentration of OLP compared to ascorbic acid, where OLP 175 µg/mL scavenged 91% of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radicals compared to 93% scavenging activity of ascorbic acid. Broiler chickens fed diets with OLP had significantly (P < 0.05) higher body weight (BW) and body weight growth (BWG) than the control birds. The treatment with OLP significantly reduced the feed intake (FI) and feed conversion rate (FCR) when compared to control. Groups supplemented with OLP showed decreased abdominal fat deposition and a significant increase in the net carcass and breast muscle weight. OLP improved birds' blood parameters in comparison with control birds. All pathogenic bacterial numbers in caecal samples were decreased with elevating OLP levels, but the cecal Lactobacillus bacterial count was increased. In conclusion, OLP supplementation improved broiler chickens' performance, carcass traits, and blood parameters. Moreover, OLP improved birds' liver functions (reduced Alanine transaminase [ALT] and aspartate aminotransferase [AST] levels) in comparison with control. In addition, OLP promoted the antioxidant status, minimized the harmful microbial load, and increased beneficial bacterial count in the cecal contents of broilers.

8.
ACS Omega ; 8(36): 32458-32467, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37720762

RESUMO

The present study aimed to assess the potential of plant growth-promoting Actinobacteria and olive solid waste (OSW) in ameliorating some biochemical and molecular parameters of wheat (Triticum aestivum) plants under the toxicity of high chromium levels in the soil. With this aim, a pot experiment was conducted, where the wheat plants were treated with a consortium of four Actinobacterium sp. (Bf treatment) and/or OSW (4% w/w) under two levels of nonstress and chromium stress [400 mg Cr(VI) per kg of soil] to estimate the photosynthetic traits, antioxidant protection machine, and detoxification activity. Both Bf and OSW treatments improved the levels of chlorophyll a (+47-98%), carotenoid (+324-566%), stomatal conductance (+17-18%), chlorophyll fluorescence (+12-28%), and photorespiratory metabolism (including +44-72% in glycolate oxidase activity, +6-72% in hydroxypyruvate reductase activity, and +5-44% in a glycine to serine ratio) in leaves of stressed plants as compared to those in the stressed control, which resulted in higher photosynthesis capacity (+18-40%) in chromium-stressed plants. These results were associated with an enhancement in the content of antioxidant metabolites (+10-117%), of direct reactive oxygen species-detoxifying enzymes (+49-94%), and of enzymatic (+40-261%) and nonenzymatic (+17-175%) components of the ascorbate-glutathione cycle in Bf- and OSW-treated plants under stress. Moreover, increments in the content of phytochelatins (+38-74%) and metallothioneins (+29-41%), as markers of detoxification activity, were recorded in the plants treated with Bf and OSW under chromium toxicity. In conclusion, this study revealed that the application of beneficial Actinobacteria and OSW as biofertilization/supplementation could represent a worthwhile consequence in improving dry matter production and enhancing plant tolerance and adaptability to chromium toxicity.

9.
Infect Drug Resist ; 16: 5335-5346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605760

RESUMO

Background: Wound infection is a prevalent concern in the medical field, being is a multi-step process involving several biological processes. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) infections often occur in areas of damaged skin, such as abrasions and open wounds. Methods: This research aims to light the incidence of MRSA and VRSA in wound swabs, the antimicrobial susceptibility configuration of isolated S. aureus patterns in pus/wound samples collected from Saudi Arabian tertiary hospital. The cross section study, ß- lactamase detection, VRSA genotyping, MAR index, D-test and VRSA genotyping are methods, which used for completed this research. Results: Patients of several ages and genders delivered specimens from two hospitals in the Al jouf area, in the northern province of Saudi Arabia. S. aureus was found in 188 (34.7%) of the 542 wounds. The traumatized wounds provided 71 isolates (38.8%), surgical wound provided 49 isolates (26.8%) and abscess were represented 16 by isolates (8.7%). In the study, 123 (65.4%) out of 188 were MRSA, 60 (31.9%) were MSSA, and five (2.7%) were VRSA. Linezolid and rifampin were found to be the most effective antimicrobials with 100% in vitro antibacterial activity against S. aureus isolates. The Multiple antimicrobials resistance (MAR) index revealed 73 isolates (38.9%) with a MAR index greater than 0.2, and 115 (61.1%) less than 0.2. The D-test showed that of MLSb phenotypes among S. aureus, 22 (11.7%) strains were D-test positive (MLSbi phenotype), 53 (28.2%) strains were constitutive MLSc phenotypes, and 17 (9%) strains were shown to have MSb phenotypes. All VRSA isolates (n=5) were found to be positive for vanA, and no vanB positive isolates were detected in the study. Conclusion: Regular monitoring and an antimicrobials stewardship program should be in place to provide critical information that can be utilized for empirical therapy and future prevention strategies.

10.
Infect Drug Resist ; 16: 4397-4408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431447

RESUMO

Background: Otitis externa and otitis media are two types of ear infections that affect people of all ages, although they are more common in newborns and young children. Antibiotic usage, healthcare, and advanced age all play a role in the development of this illness. Methods: Fifty-eight patients with various kinds of infections of the ears were voluntary patients attending the outpatient clinics of the Prince Mutaib Bin Abdulaziz Hospital in Sakaka, Al Jouf, Saudi Arabia, examined to evaluate the role of bacteria and the likely significance of plasmids in their antibiotic resistance as ear infectious agents. Results: Staphylococcus aureus and Pseudomonas aeruginosa are the most prevalent bacteria found in ear infections. The greatest number of major bacterial isolates were S. aureus (54%), followed by P. aeruginosa (13%), whereas a smaller number of isolates (3%) were from Streptococcus pyogenes, Bacillus subtilis, and Proteus vulgaris, respectively. Mixed growth was noted in 3.4% of instances. The isolation rate for Gram-positive organisms was 72%, while the rate for Gram-negative species was 28%. All the isolates had DNA greater than 14 kilobases. Hind III analysis of the plasmid DNA extracted from the resistant strains of ear infection demonstrated that antibiotic-resistance plasmids were extensively dispersed. Exotoxin A PCR amplification indicated 396 pb PCR-positive DNA for all identified samples, with the exception of three strains for which no band was observed. Patients in the epidemiological study ranged in number, but all were linked together for the purposes of the study because of their shared epidemiological characteristics. Conclusion: Vancomycin, linezolid, tigecycline, rifampin, and daptomycin are all antibiotics that have been shown to be effective against S. aureus and P. aeruginosa. Microbiological pattern evaluation and antibiotic sensitivity patterns of the microorganisms providing empirical antibiotics are becoming increasingly crucial to minimize issues and the development of antibiotic-resistant strains.

11.
Poult Sci ; 102(9): 102840, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37478510

RESUMO

The avian digestive tract is an important system for converting ingested food into the nutrients their bodies need for maintenance, growth, and reproduction (meat, table eggs, and fertile eggs). Therefore, preserving digestive system integrity is crucial to bird health and productivity. As an alternative to antibiotics, the world has recently turned to the use of natural products to enhance avian development, intestinal health, and production. Therefore, the primary goal of this review is to explain the various characteristics of the avian digestive tract and how to enhance its performance with natural, safe feed additives such as exogenous enzymes, organic acids, photogenic products, amino acids, prebiotics, probiotics, synbiotics, and herbal extracts. In conclusion, the composition of the gut microbiome can be influenced by a number of circumstances, and this has important consequences for the health and productivity of birds. To better understand the connection between pathogens, the variety of therapies available, and the microbiome of the gut, additional research needs to be carried out.


Assuntos
Antibacterianos , Probióticos , Animais , Aves Domésticas , Galinhas , Óvulo , Carne
12.
Biomedicines ; 11(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371746

RESUMO

The presence of COVID-19 antibodies in the maternal circulation is assumed to be protective for newborns against SARS-CoV-2 infection. We investigated whether maternal COVID-19 antibodies crossed the transplacental barrier and whether there was any difference in the hematological parameters of neonates born to mothers who recovered from COVID-19 during pregnancy. The cross-sectional study was conducted at the Saidu Group of Teaching Hospitals, located in Swat, Khyber Pakhtunkhwa. After obtaining written informed consent, 115 healthy, unvaccinated mother-neonate dyads were included. A clinical history of COVID-19-like illness, laboratory-confirmed diagnosis, and contact history were obtained. Serum samples from mothers and neonates were tested for SARS-CoV-2 anti-receptor-binding domain (anti-RBD) IgG antibodies. Hematological parameters were assessed with complete blood counts (CBC) and peripheral blood smear examinations. The study population consisted of 115 mothers, with a mean age of 29.44 ± 5.75 years, and most women (68/115 (59.1%)) were between 26 and 35 years of age. Of these mothers, 88/115 (76.5 percent) tested positive for SARS-CoV-2 anti-RBD IgG antibodies, as did 83/115 (72.2 percent) neonatal cord blood samples. The mean levels of SARS-CoV-2 IgG antibodies in maternal and neonatal blood were 19.86 ± 13.82 (IU/mL) and 16.16 ± 12.90 (IU/mL), respectively, indicating that maternal antibodies efficiently crossed the transplacental barrier with an antibody transfer ratio of 0.83. The study found no significant difference in complete blood count (CBC) parameters between seropositive and seronegative mothers, nor between neonates born to seropositive and seronegative mothers.

13.
Front Plant Sci ; 14: 1136961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152127

RESUMO

Introduction: Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods: The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion: The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion: These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.

14.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050006

RESUMO

In the present study, an attempt was made to investigate the in vitro antioxidant, anticancer, and antibacterial activities of Delonix regia, then in vivo evaluate its safety as a natural colorant and sweetener in beverages compared to synthetic colorant and sweetener in rats, then serve the beverages for sensory evaluation. Delonix regia flowers had high protein, polysaccharide, Ca, Na, Mg, K, and Fe contents. The Delonix regia pigment extract (DRPE) polysaccharides were separated and purified by gel permeation chromatography on Sephacryl S-200, characterized by rich polysaccharides (13.6 g/L). The HPLC sugar profile detected the monosaccharides in the extracted polysaccharides, composed of mannose, galactose, glucose, arabinose, and gluconic acid, and the structure of saccharides was confirmed by FTIR, which showed three active groups: carbonyl, hydrocarbon, and hydroxyl. On the other hand, the red pigment constituents of DRPE were detected by HPLC; the main compounds were delphinidin and cyanidin at 15 µg/mL. The DRPE contained a considerable amount (26.33 mg/g) of anthocyanins, phenolic compounds (64.7 mg/g), and flavonoids (10.30 mg/g), thus influencing the antioxidant activity of the DRPE, which scavenged 92% of DPPH free radicals. Additionally, it inhibited the population of pathogenic bacteria, including Staphylococcus aureus, Listeria monocyogenes, Salmonella typhimurum, and Pseudomonas aeruginosa, in the range of 30-90 µg/mL, in addition to inhibiting 85% of pancreatic cancer cell lines. On the in vivo level, the rats that were delivered a diet containing DRPE showed regular liver markers (AST, ALP, and ALT); kidney markers (urea and creatinine); high TP, TA, and GSH; and low MDA, while rats treated with synthetic dye and aspartame showed higher liver and kidney markers; lowered TP, TA, and GSH; and high MDA. After proving the safety of DRPE, it can be safely added to strawberry beverages. Significant sensorial traits, enhanced red color, and taste characterize the strawberry beverages supplemented with DRPE. The lightness and redness of strawberries were enhanced, and the color change ΔE values in DRPE-supplemented beverages ranged from 1.1 to 1.35 compared to 1.69 in controls, indicating the preservative role of DRPE on color. So, including DRPE in food formulation as a natural colorant and sweetener is recommended for preserving health and the environment.


Assuntos
Antioxidantes , Fabaceae , Ratos , Animais , Antioxidantes/química , Antocianinas/farmacologia , Antocianinas/análise , Edulcorantes , Extratos Vegetais/química , Polissacarídeos/química , Carboidratos/análise , Flores/química , Antibacterianos/farmacologia , Antibacterianos/análise , Fabaceae/química , Bebidas/análise
15.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903959

RESUMO

Heavy metal such as arsenite (AsIII) is a threat worldwide. Thus, to mitigate AsIII toxicity on plants, we investigated the interactive effect of olive solid waste (OSW) and arbuscular mycorrhizal fungi (AMF) on wheat plants under AsIII stress. To this end, wheat seeds were grown in soils treated with OSW (4% w/w), AMF-inoculation, and/or AsIII treated soil (100 mg/kg soil). AMF colonization is reduced by AsIII but to a lesser extent under AsIII + OSW. AMF and OSW interactive effects also improved soil fertility and increased wheat plants' growth, particularly under AsIII stress. The interactions between OSW and AMF treatments reduced AsIII-induced H2O2 accumulation. Less H2O2 production consequently reduced AsIII-related oxidative damages i.e., lipid peroxidation (malondialdehyde, MDA) (58%), compared to As stress. This can be explained by the increase in wheat's antioxidant defense system. OSW and AMF increased total antioxidant content, phenol, flavonoids, and α-tocopherol by approximately 34%, 63%, 118%, 232%, and 93%, respectively, compared to As stress. The combined effect also significantly induced anthocyanins accumulation. The combination of OSW+AMF improved antioxidants enzymes activity, where superoxide dismutase (SOD, catalase (CAT), peroxidase (POX), glutathione reductase (GR), and glutathione peroxidase (GPX) were increased by 98%, 121%, 105%, 129%, and 110.29%, respectively, compared to AsIII stress. This can be explained by induced anthocyanin percussors phenylalanine, cinamic acid and naringenin, and biosynthesic enzymes (phenylalanine aminolayse (PAL) and chalcone synthase (CHS)). Overall, this study suggested the effectiveness of OSW and AMF as a promising approach to mitigate AsIII toxicity on wheat growth, physiology, and biochemistry.

16.
Microorganisms ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36985234

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKp) is a new emerging variant of K. pneumoniae that is increasingly reported worldwide. The variant hvKp is known to cause severe invasive community-acquired infections such as metastatic meningitis, pyogenic liver abscesses (PLA) and endophthalmitis, but its role in hospital-acquired infections (HAIs) is little known. The aim of this study was to evaluate the prevalence of hvKp among hospital-acquired (HA) K. pneumoniae infections in the intensive care unit (ICU) and to compare between hvKp and classical K. pneumoniae (cKP) regarding antimicrobial resistance pattern, virulence and molecular characteristics. The study was cross-sectional and included 120 ICU patients suffering from HA K. pneumoniae infections between January and September 2022. K. pneumoniae isolates were subjected to antimicrobial susceptibility testing and detection of extended-spectrum-ß-lactamase (ESBL) production by the Phoenix 100 automated microbiology system, string test, biofilm formation, serum resistance assay, and detection of virulence-associated genes (rmpA, rmpA2, magA, iucA) and capsular serotype-specific genes (K1, K2, K5, K20, K57) by polymerase chain reaction (PCR). Of 120 K. pneumoniae isolates, 19 (15.8%) were hvKp. The hypermucoviscous phenotype was more significantly detected in the hvKp group than in the cKP group (100% vs. 7.9%, p ≤ 0.001). The rate of resistance to different antimicrobial agents was significantly higher in the cKP group than that in the hvKp group. Fifty-three strains were identified as ESBL-producing strains, which was more frequent in the cKP group than in the hvKp group (48/101 [47.5%] vs. 5/19 [26.3%], respectively, p ≤ 0.001). The hvKP isolates were highly associated with moderate and strong biofilm formation than cKP isolates (p = 0.018 and p = 0.043 respectively). Moreover, the hvKP isolates were highly associated with intermediate sensitivity and re sistance to serum in the serum resistance assay (p = 0.043 and p = 0.016 respectively). K1, K2, rmpA, rmpA2, magA and iucA genes were significantly associated with hvKp (p ≤ 0.001, 0.004, <0.001, <0.001, 0.037 and <0.001, respectively). However, K5, K20 and K57 were not associated with hvKp. The hvKp strains have emerged as a new threat to ICU patients because of their ability to cause more severe and life-threatening infections than cKP. The string test alone as a laboratory test for screening of hvKp has become insufficient. Recently, hvKp was defined as hypermucoviscous- and aerobactin-positive. It is important to improve the awareness towards the diagnosis and management of hvKp infections.

17.
Front Nutr ; 9: 1008349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36424930

RESUMO

Olive oil production is a significant source of economic profit for Mediterranean nations, accounting for around 98 percent of global output. Olive oil usage has increased dramatically in recent years, owing to its organoleptic characteristics and rising knowledge of its health advantages. The culture of olive trees and the manufacture of industrial and table olive oil produces enormous volumes of solid waste and dark liquid effluents, involving olive leaves, pomace, and olive oil mill wastewaters. These by-products cause an economic issue for manufacturers and pose major environmental concerns. As a result, partial reuse, like other agronomical production wastes, is a goal to be achieved. Because these by-products are high in bioactive chemicals, which, if isolated, might denote components with significant added value for the food, cosmetic, and nutraceutical sectors, indeed, they include significant amounts of beneficial organic acids, carbohydrates, proteins, fibers, and phenolic materials, which are distributed differently between the various wastes depending on the olive oil production method and table olive agronomical techniques. However, the extraction and recovery of bioactive materials from chosen by-products is a significant problem of their reasonable value, and rigorous detection and quantification are required. The primary aims of this review in this context are to outline the vital bioactive chemicals in olive by-products, evaluate the main developments in extraction, purification, and identification, and study their uses in food packaging systems and safety problems.

18.
Artigo em Inglês | MEDLINE | ID: mdl-36429532

RESUMO

Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there is currently no registered E. xiangfangensis drug on the market that has been shown to be effective. Hence, there is an urgent need to identify novel therapeutic targets and effective treatments for E. xiangfangensis. In the current study, a bacterial pan genome analysis and subtractive proteomics approach was employed to the core proteomes of six strains of E. xiangfangensis using several bioinformatic tools, software, and servers. However, 2611 nonredundant proteins were predicted from the 21,720 core proteins of core proteome. Out of 2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins. After the subtractive proteomics and subcellular localization analysis, only 133 proteins were found in cytoplasm. All cytoplasmic proteins were examined using BLASTp against the virulence factor database, which classifies 20 therapeutic targets as virulent. Out of these 20, 3 cytoplasmic proteins: ferric iron uptake transcriptional regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as potential drug targets. These drug targets are important for bacterial survival, virulence, and growth and could be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly dock these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin demonstrated optimum binding against all three target proteins. Furthermore, molecular dynamics simulations and MM/GBSA analyses validated the stability of ligand-protein complexes and revealed that these compounds could serve as potential E. xiangfangensis replication inhibitors. Consequently, this study marks a significant step forward in the creation of new and powerful drugs against E. xiangfangensis. Future studies should validate these targets experimentally to prove their function in E. xiangfangensis survival and virulence.


Assuntos
Proteínas de Bactérias , Enterobacter , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Genoma Bacteriano , Difosfato de Uridina
19.
Front Nutr ; 9: 999581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225874

RESUMO

Industrial pomaces are cheap sources of phenolic compounds and fibers but dumping them in landfills has negative environmental and health consequences. Therefore, valorizing these wastes in the food industry as additives significantly enhances the final product. In this study, the citrus pomaces, orange pomace (OP), mandarin pomace (MP), and lemon pomace (LP) were collected by a juice company and subjected to producing polyphenols and fiber-enriched fractions, which are included in functional yogurt; the pomace powder with different levels (1, 3, and 5%) was homogenized in cooled pasteurized milk with other ingredients (sugar and starter) before processing the yogurt fermentation. The HPLC phenolic profile showed higher phenolic content in OP extract, i.e., gallic acid (1,702.65), chlorogenic acid (1,256.22), naringenin (6,450.57), catechin (1,680.65), and propyl gallate (1,120.37) ppm with massive increases over MP (1.34-37 times) and LP (1.49-5 times). The OP extract successfully scavenged 87% of DPPH with a relative increase of about 16 and 32% over LP and MP, respectively. Additionally, it inhibits 77-90% of microbial growth at 5-8 µg/mL while killing them in the 9-14 µg/mL range. Furthermore, OP extract successfully reduced 77% of human breast carcinoma. Each of pomace powder sample (OP, MP, LP) was added to yogurt at three levels; 1, 3, and 5%, while the physiochemical, sensorial, and microbial changes were monitored during 21 days of cold storage. OP yogurt had the highest pH and lowest acidity, while LP yogurt recorded the reverse. High fat and total soluble solids (TSS) content are observed in OP yogurt because of the high fiber content in OP. The pH values of all yogurt samples decreased, while acidity, fat, and TSS increased at the end of the storage period. The OP yogurts 1 and 3% scored higher in color, flavor, and structure than other samples. By measuring the microbial load of yogurt samples, the OP (1 and 3%) contributes to the growth of probiotics (Lactobacillus spp) in yogurt samples and reduces harmful microbes. Using citrus pomace as a source of polyphenols and fiber in functional foods is recommended to enhance their physiochemical and sensory quality.

20.
Nanomaterials (Basel) ; 12(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36234586

RESUMO

The ability and potency of bacterial species to form biofilms, which show antibiotic resistance thereby avoiding antibiotic surfaces, is a major cause of prolonged infections. Various advanced approaches have been employed to prevent or damage bacterial biofilms, formed by a variety of bacterial strains, to help prevent the associated infectious disease. In this context, zinc-based nanostructures have been recognized as a potential antibiotic agent against a broad spectrum of bacterial communities. As a result, a sustainable and green synthesis method was adapted in the present study to synthesize a Zn(OH)2/ZnO-based bionanocomposite, in which aqueous extracts of waste pomegranate peels (Punica granatum) were employed as a natural bioreducing agent to prepare the bionanocomposite at room temperature. Furthermore, FT-IR, XRD, DLS, UV-Visible, PL spectroscopy, FE-SEM, and TEM were used to characterize the green route synthesized a Zn(OH)2/ZnO bionanocomposite. The average crystallite size was determined using the Scherrer relation to be 38 nm, and the DLS results indicated that the Zn(OH)2/ZnO bionanocomposite had a hydrodynamic size of 170 nm. On the other hand, optical properties investigated through UV-Vis and PL spectroscopy explored the energy bandgap between 2.80 and 4.46 eV, corresponding to the three absorption edges, and it covered the blue spectrum when the sample was excited at 370 nm. Furthermore, the impact of this green route synthesized a Zn(OH)2/ZnO bionanocomposite on the biofilm degradation efficiency of the pathogenic bacterial strain Bacillus subtilis PF_1 using the Congored method was investigated. The Congored assay clearly explored the biofilm degradation efficiency in the presence of a 50 mg/mL and 75 mg/mL concentration of the Zn(OH)2/ZnO bionanocomposite against the bacterial strain Bacillus subtilis PF_1 grown for 24 h. This study can be further applied to the preparation of bionanocomposites following a low-cost green synthesis approach, and thus prepared nanostructures can be exploited as advanced antimicrobial agents, which could be of great interest to prevent various infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...